skip to main content


Search for: All records

Creators/Authors contains: "Chockalingam, Sriram P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Gene network reconstruction from gene expression profiles is a compute- and data-intensive problem. Numerous methods based on diverse approaches including mutual information, random forests, Bayesian networks, correlation measures, as well as their transforms and filters such as data processing inequality, have been proposed. However, an effective gene network reconstruction method that performs well in all three aspects of computational efficiency, data size scalability, and output quality remains elusive. Simple techniques such as Pearson correlation are fast to compute but ignore indirect interactions, while more robust methods such as Bayesian networks are prohibitively time consuming to apply to tens of thousands of genes.

    Results

    We developed maximum capacity path (MCP) score, a novel maximum-capacity-path-based metric to quantify the relative strengths of direct and indirect gene–gene interactions. We further present MCPNet, an efficient, parallelized gene network reconstruction software based on MCP score, to reverse engineer networks in unsupervised and ensemble manners. Using synthetic and real Saccharomyces cervisiae datasets as well as real Arabidopsis thaliana datasets, we demonstrate that MCPNet produces better quality networks as measured by AUPRC, is significantly faster than all other gene network reconstruction software, and also scales well to tens of thousands of genes and hundreds of CPU cores. Thus, MCPNet represents a new gene network reconstruction tool that simultaneously achieves quality, performance, and scalability requirements.

    Availability and implementation

    Source code freely available for download at https://doi.org/10.5281/zenodo.6499747 and https://github.com/AluruLab/MCPNet, implemented in C++ and supported on Linux.

     
    more » « less
  2. Abstract Motivation

    Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A wide range of methods that differ between the types of interactions they uncover with varying trade-offs between sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network methods that combine predictions from resulting networks have been developed, promising results better than or as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these ensemble methods hitherto are unsupervised.

    Results

    In this article, we introduce EnGRaiN, the first supervised ensemble learning method to construct gene networks. The supervision for training is provided by small training datasets of true edge connections (positives) and edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simulated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteristic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble network construction, but also generates networks that can be mined for elucidating complex biological interactions.

    Availability and implementation

    EnGRaiN software and the datasets used in the study are publicly available at the github repository: https://github.com/AluruLab/EnGRaiN.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. null (Ed.)
    Abstract Background Alignment-free methods for sequence comparisons have become popular in many bioinformatics applications, specifically in the estimation of sequence similarity measures to construct phylogenetic trees. Recently, the average common substring measure, ACS , and its k -mismatch counterpart, ACS k , have been shown to produce results as effective as multiple-sequence alignment based methods for reconstruction of phylogeny trees. Since computing ACS k takes O ( n log k n ) time and hence impractical for large datasets, multiple heuristics that can approximate ACS k have been introduced. Results In this paper, we present a novel linear-time heuristic to approximate ACS k , which is faster than computing the exact ACS k while being closer to the exact ACS k values compared to previously published linear-time greedy heuristics. Using four real datasets, containing both DNA and protein sequences, we evaluate our algorithm in terms of accuracy, runtime and demonstrate its applicability for phylogeny reconstruction. Our algorithm provides better accuracy than previously published heuristic methods, while being comparable in its applications to phylogeny reconstruction. Conclusions Our method produces a better approximation for ACS k and is applicable for the alignment-free comparison of biological sequences at highly competitive speed. The algorithm is implemented in Rust programming language and the source code is available at https://github.com/srirampc/adyar-rs . 
    more » « less